school

UM E-Theses Collection (澳門大學電子學位論文庫)

check Full Text
Title

Linear statistics of matrix ensembles in classical background

English Abstract

Given a joint probability density function (jpdf) of N real random variables, {xj} N j=1, obtained from the eigenvector-eigenvalue decomposition of N × N random matrices, one constructs a random variable, the linear statistics, defined by the sum of smooth functions evaluated at the eigenvalues or singular values of the random matrix, namely, PN j=1 F(xj ). Linear statistics is an ubiquitous statistical characteristic in random matrix theory. For the jpdfs obtained from the Gaussian and Laguerre ensembles, we compute, in this thesis the moment-generating function Eβ(exp(−λ P j F(xj ))), where Eβ denotes expectation value over the Orthogonal (β = 1), Unitary (β = 2) and Symplectic (β = 4) ensembles, in the form of one plus a Schwartz function, non vanishing over R for the Gaussian ensembles and over R + for the Laguerre ensembles. These are ultimately expressed in the form of the determinants of identity plus a scalar operator, from which we obtained the large N asymptotic of the linear statistics from suitably scaled F(·). For Hermitian random matrix ensembles, we show that if F(·) is a polynomial of degree K, then the variance of tr F(M) or PN j=1 F(xj ), is of the form, PK n=1 n(dn) 2 , and dn is related to the expansion coefficients cn of the polynomial F(x) = PK n=0 cnPbn(x), where Pbn(x) are polynomials of degree n, orthogonal with respect to the weights √ 1 (b−x)(x−a) , p (b − x)(x − a), √ (b−x)(x−a) x , (0 < a < x < b), √ (b−x)(x−a) x(1−x) , (0 < a < x < b < 1), respectively. ii Decl

Issue date

2016.

Author

Min, Chao

Faculty

Faculty of Science and Technology

Department

Department of Mathematics

Degree

Ph.D.

Subject

Linear systems

Matrices

Supervisor

Chen, Yang

Files In This Item

Full-text (Intranet only)

Location
1/F Zone C
Library URL
991001897999706306